Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4,4'-Bipyridinium bis(μ-4-oxo-1,4-dihydropyridine-2,6-dicarboxylato)bis[aquahydroxidoantimonate(III)] dihydrate

Janet Soleimannejad,^a* Jafar Attar Gharamaleki,^b Hossein Aghabozorg^c and Yaghoub Mohammadzadeh Azar Golenji^a

^aDepartment of Chemistry, Ilam University, Ilam, Iran, ^bYoung Researchers Club, Islamic Azad University, North Tehran Branch, Tehran, Iran, and ^cFaculty of Chemistry, Islamic Azad University, North Tehran Branch, Tehran, Iran Correspondence e-mail: janet_soleimannejad@yahoo.com

Received 24 February 2010; accepted 22 March 2010

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.003 Å; R factor = 0.021; wR factor = 0.054; data-to-parameter ratio = 15.2.

The title compound, $(C_{10}H_{10}N_2)[Sb_2(C_7H_2NO_5)_2(OH)_2]$ (H₂O)₂]·2H₂O, consists of a binuclear anion, a diprotonated 4,4'-bipyridinium cation and two uncoordinated water molecules. Each Sb^{III} atom is six-coordinated by one chelating 4oxidopyridine-2,6-dicarboxylate ligand, one water molecule, one OH group and one bridging O atom from a neighboring carboxylate group in a distorted pentagonal-pyramidal geometry, with the OH group at the apical position. The two pyridine rings in the bipyridinium cation are twisted with respect to each other, making a dihedral angle of $22.7 (1)^{\circ}$. The cations are connected to the anions by $N-H\cdots O$ hydrogen bonds, forming a chain. The coordinated water molecules form hydrogen bonds with the oxido O atoms of the anion, building a two-dimensional sheet, which is further connected into a three-dimensional structure by O-H···O and C-H···O hydrogen bonds and C=O··· π interactions $[O \cdot \cdot \cdot centroid distances = 3.1785 (17), 3.4737 (19) and$ 3.5685 (19) Å].

Related literature

For the use of 4,4'-bipyridine in the construction of supramolecular architectures, see: Jia *et al.* (2009); Meng *et al.* (2009); Zhang *et al.* (2009). For binuclear complexes of Sb^{III}/ Sb^V with pyridine-2,6-dicarboxylic acid, see: Aghabozorg *et al.* (2005); Soleimannejad *et al.* (2008). For proton transfer compounds and their metal complexes, see: Aghabozorg *et al.* (2008). For environmental studies of antimony, see: Filella *et al.* (2002).

Experimental

Crystal data

$(C_{10}H_{10}N_2)[Sb_2(C_7H_2NO_5)_2(OH)_2-$
$(H_2O)_2]\cdot 2H_2O$
$M_r = 867.97$
Triclinic, P1
a = 7.7774 (9) Å
b = 10.2465 (12) Å
c = 17.773 (2) Å
$\alpha = 80.255 \ (5)^{\circ}$

Data collection

```
Bruker SMART 1000 CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
T<sub>min</sub> = 0.559, T<sub>max</sub> = 0.776
```

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.021$ $wR(F^2) = 0.054$ S = 1.056323 reflections 29846 measured reflections 6323 independent reflections 5762 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.027$

 $\beta = 81.760 \ (5)^{\circ}$

 $\gamma = 82.547(5)^{\circ}$

Z = 2

T = 150 K

V = 1373.4 (3) Å³

Mo $K\alpha$ radiation $\mu = 2.06 \text{ mm}^{-1}$

 $0.32 \times 0.32 \times 0.13~\text{mm}$

 $\begin{array}{l} 415 \text{ parameters} \\ \text{H-atom parameters constrained} \\ \Delta \rho_{max} = 1.03 \text{ e } \text{ Å}^{-3} \\ \Delta \rho_{min} = -0.61 \text{ e } \text{ Å}^{-3} \end{array}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O1W−H1A···O2 ⁱ	0.85	1.88	2.725 (2)	177
$O1W-H1B\cdots O11^{ii}$	0.85	1.87	2.704 (2)	167
$O2W-H2A\cdots O7^{iii}$	0.86	1.85	2.703 (2)	171
$O2W-H2B\cdots O16^{iv}$	0.85	1.86	2.669 (2)	157
$O11-H11A\cdots O2W$	0.85	1.90	2.688 (2)	154
$O16-H16A\cdots O1W$	0.85	1.88	2.684 (2)	155
O13-H13A···O9	0.85	1.83	2.672 (2)	173
$O13-H13B\cdots O3^{v}$	0.85	1.92	2.764 (2)	173
O15−H15A···O4	0.85	1.88	2.709 (2)	166
$O15-H15B\cdots O8^{vi}$	0.85	1.98	2.823 (2)	171
$N3-H3A\cdots O3^{vii}$	0.85	1.78	2.624 (2)	171
$N4-H4A\cdotsO8^{vi}$	0.85	1.80	2.648 (2)	173
$C3-H3\cdots O1W^{i}$	0.93	2.60	3.460 (3)	154
$C5-H5\cdots O9^{vi}$	0.93	2.53	3.434 (3)	164
$C12-H12\cdots O4^{v}$	0.93	2.55	3.470 (3)	172
C15-H15···O6	0.93	2.59	3.415 (3)	149
$C19-H19\cdots O2W^{iii}$	0.93	2.60	3.484 (3)	160
$C20-H20\cdots O1W^{viii}$	0.93	2.25	3.172 (3)	172
$C21-H21\cdots O1^{ix}$	0.93	2.44	3.358 (3)	170
$C22-H22\cdots O2^{ix}$	0.93	2.45	3.107 (3)	128
$C24-H24\cdots O16^{x}$	0.93	2.57	3.261 (3)	131

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) x - 1, y, z; (iii) -x + 1, -y + 2, -z; (iv) x + 1, y, z; (v) x, y + 1, z; (vi) x, y - 1, z; (vii) x - 1, y + 1, z - 1; (viii) -x, -y + 2, -z; (ix) x - 1, y, z - 1; (x) -x, -y + 1, -z.

metal-organic compounds

Data collection: *SMART* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

Financial support from Ilam University is gratefully acknowledged.

References

- Aghabozorg, H., Dalir Kheirollahi, P., Moghimi, A. & Sadr-Khanlou, E. (2005). Anal. Sci. 21, x79-x80.
- Aghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184–227.
- Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Filella, M., Belzile, N. & Chen, Y. W. (2002). Earth Sci. Rev. 59, 265-285.
- Jia, M., Liu, X., Miao, J., Xiong, W. & Chen, Z. (2009). Acta Cryst. E65, o2490.Meng, Q.-H., Han, L., Hou, J.-D., Luo, Y.-F. & Zeng, R.-H. (2009). Acta Cryst. E65, o132–o133.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Soleimannejad, J., Aghabozorg, H., Mohammadzadeh Azar Golenji, Y., Attar Gharamaleki, J. & Adams, H. (2008). *Acta Cryst.* E64, m387–m388.
- Zhang, B.-Y., Nie, J.-J. & Xu, D.-J. (2009). Acta Cryst. E65, m975-m976.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2287).

Acta Cryst. (2010). E66, m467-m468 [doi:10.1107/S1600536810010743]

4,4'-Bipyridinium

bis(#-4-oxo-1,4-dihydropyridine-2,6-

dicarboxylato)bis[aquahydroxidoantimonate(III)] dihydrate

J. Soleimannejad, J. Attar Gharamaleki, H. Aghabozorg and Y. Mohammadzadeh Azar Golenji

Comment

It is well known that 4,4'-bipyridine is an excellent candidate for the construction of three-dimensional network motifs. It can act as coordinating or bridging ligand or as proton acceptor agent (Jia *et al.*, 2009; Meng *et al.*, 2009; Zhang *et al.*, 2009). The binuclear mixed ligand Sb^{III}/Sb^V compounds have been recently reported, in which pyridinedicarboxylic acid has been used as chelating ligand (Soleimannejad *et al.*, 2008). For more details regarding proton transfer compounds and their metal complexes see our review article (Aghabozorg *et al.*, 2008).

The title compound is composed of a binuclear $[Sb(hypydc)(OH)(H_2O)]_2^{2-}$ (H₃hypydc = 4-hydroxypyridine-2,6-dicarboxylic acid) anion, a diprotonated 4,4'-bipyridinium cation and two uncoordinated water molecules (Fig. 1). In the binuclear complex anion, each Sb^{III} atom is six-coordinated by one chelating (hypydc)³⁻ ligand through its one N and two O atoms, one O atom from a terminal OH group, one O atom from a water molecule and one O atom from a neighboring carboxylate group as bridging ligand in a distorted pentagonal pyramidal geometry (Fig. 2). The relatively weaker Sb1—O10 [2.7617 (14) Å] and Sb2—O5 [2.7959 (14) Å] interactions connect the two anionic units into a binuclear complex through sharing O atoms of the carboxylate groups. The OH group is located at the apical position [Sb1—O11 = 1.9300 (15) and Sb2—O16 = 1.9304 (14) Å] and the rest O₄N set forms the basal plane. It is supposed that this OH group is formed during the partial hydrolysis of SbCl₃ to SbOCl, which is further hydrolyzed to Sb(OH)₃, because free Sb^{III} ion is stable in solution only at very high acidities (Filella *et al.*, 2002). The Sb1—N1 and Sb2—N2 bond distances are 2.197 (3) and 2.191 (3) Å, respectively, which are comparable with the bond distances of Sb^{III} binuclear complex with pyridine-2,6-dicarboxylic acid (Aghabozorg *et al.*, 2005). The Sb^{III} atoms deviate by 0.272 (5) and 0.249 (2) Å from the mean basal planes. The bond angles indicate that the lone-pairs on Sb^{III} atoms are stereochemically active and stand at the *trans* positions to the OH groups. In the 4,4'-bipyridinium cation, the two pyridine rings are twisted with respect to each other, making a dihedral angle of 22.7 (1)°, which indicates the flexibility of the central C—C bond.

The intramolecular hydrogen bonds O13—H13A···O9 and O15—H15A···O4 are present in the anionic complex (Table 1). The 4,4'-bipyridinium cations are hydrogen bonded to these anions by two distinct N3—H3A···O3^{vii} and N4—H4A···O8^{vi} hydrogen bonds [symmetry codes: (vi) x, y-1, z; (vii) x-1, y+1, z-1], forming one-dimensional chains. The coordinated water molecules act as donors with respect to oxido O atoms of the (hypydc)³⁻ ligands from neighboring chains, building a two-dimensional sheet (Fig. 3). These sheets are further connected into a three-dimensional structure by O—H···O and C—H···O hydrogen-bonding interactions involving coordinated terminal OH group as well as uncoordinated water molecules. A noticeable feature of the title compound is the presence of C=O···π interactions between C=O groups and pyridyl rings of 4,4'-bipyridinium cations. The O···π distances are 3.4737 (19) Å for C4=O3···Cg1 (1-x, 1-y, -z), 3.1785 (17) Å for C11=O8···Cg2 (-x, 2-y, -z) and 3.5685 (19) Å for C14=O9···Cg1 (-x, 2-y, -z) [Cg1 and Cg2 are the centroids of N3, C18—C22 ring and N4, C15, C16, C17, C23, C24 ring]. The crystal packing diagram of the title compound is shown in Fig. 4.

Experimental

The title compound was prepared by the refluxing of 4,4'-bipyridine (312 mg, 2 mmol), 4-hydroxypyridine-2,6-dicarboxylic acid (183 mg, 1 mmol) and SbCl₃ (228 mg, 1 mmol) in water (50 ml) in a 2:1:1 molar ratio for several hours. Colorless crystals were obtained by slow evaporation of the solvent at room temperature. The highest residual electron density was found 0.92 Å from O13 and the deepest hole 0.79 Å from Sb2.

Refinement

C- and N-bound H atoms were positioned geometrically and treated as riding atoms, with C—H = 0.93 and N—H = 0.85 Å and with $U_{iso}(H) = 1.2U_{eq}(C, N)$. H atoms on water molecules and hydroxy groups were observed on a difference Fourier map and refined as riding, with O—H = 0.85 Å and $U_{iso}(H) = 1.2U_{eq}(O)$.

Figures

Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are shown at the 50% probability level. Two uncoordinated water molecules are omitted for clarity.

Fig. 2. Distorted pentagonal pyramidal geometries around the Sb^{III} atoms in the anionic complex.

Fig. 3. Hydrogen bonding (dashed lines) between 4,4'-bipyridinium cations, $[Sb(hypydc)(OH)(H_2O)]_2^2$ anions and uncoordinated water molecules.

Fig. 4. Crystal packing of the title compound. Hydrogen bonds are shown as dashed lines.

4,4'-Bipyridinium bis(µ-4-oxo-1,4-dihydropyridine-2,6- dicarboxylato)bis[aquahydroxidoantimonate(III)] dihydrate

Crystal data

$(C_{10}H_{10}N_2)[Sb_2(C_7H_2NO_5)_2(OH)_2(H_2O)_2] \cdot 2H_2O$	Z = 2
$M_r = 867.97$	F(000) = 852
Triclinic, PT	$D_{\rm x} = 2.099 {\rm Mg m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å

a = 7.7774 (9) Å b = 10.2465 (12) Å c = 17.773 (2) Å $\alpha = 80.255 (5)^{\circ}$ $\beta = 81.760 (5)^{\circ}$ $\gamma = 82.547 (5)^{\circ}$ $V = 1373.4 (3) \text{ Å}^{3}$

Data collection

Bruker SMART 1000 CCD diffractometer	6323 independent reflections
Radiation source: fine-focus sealed tube	5762 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.027$
φ and ω scans	$\theta_{\text{max}} = 27.6^\circ, \ \theta_{\text{min}} = 1.2^\circ$
Absorption correction: multi-scan (SADABS; Bruker, 2001)	$h = -10 \rightarrow 10$
$T_{\min} = 0.559, T_{\max} = 0.776$	$k = -13 \rightarrow 13$
29846 measured reflections	<i>l</i> = −23→23

Cell parameters from 16661 reflections

 $\theta = 2.5 - 27.5^{\circ}$

 $\mu = 2.06 \text{ mm}^{-1}$ T = 150 K

Block, colourless

 $0.32 \times 0.32 \times 0.13 \text{ mm}$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.021$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.054$	H-atom parameters constrained
<i>S</i> = 1.05	$w = 1/[\sigma^2(F_o^2) + (0.0291P)^2 + 1.1343P]$ where $P = (F_o^2 + 2F_c^2)/3$
6323 reflections	$(\Delta/\sigma)_{\text{max}} = 0.002$
415 parameters	$\Delta \rho_{max} = 1.03 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.61 \text{ e} \text{ Å}^{-3}$

	Fractional d	atomic	coordinates	and	isotropic	or	equivalent	isotropic	displ	lacement	parameters	(Å	$^{2})$
--	--------------	--------	-------------	-----	-----------	----	------------	-----------	-------	----------	------------	----	---------

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Sb1	0.580591 (16)	0.703688 (13)	0.358013 (7)	0.01090 (4)
Sb2	0.438680 (16)	0.752017 (12)	0.129483 (7)	0.01011 (4)
O1W	0.11728 (19)	0.69329 (15)	0.33900 (9)	0.0163 (3)
H1A	0.1420	0.6243	0.3712	0.020*
H1B	0.0115	0.6949	0.3314	0.020*
01	0.72456 (19)	0.67130 (15)	0.45745 (8)	0.0150 (3)
O2W	0.9042 (2)	0.8814 (2)	0.17638 (12)	0.0439 (6)
H2A	0.8878	0.9460	0.1396	0.053*
H2B	1.0123	0.8520	0.1710	0.053*
O2	0.8151 (2)	0.52864 (15)	0.55669 (9)	0.0170 (3)
O3	0.7165 (2)	0.08698 (15)	0.46954 (9)	0.0189 (3)

O4	0.4341 (2)	0.39130 (15)	0.24797 (9)	0.0172 (3)
05	0.49471 (19)	0.58946 (14)	0.26877 (8)	0.0141 (3)
O6	0.30385 (19)	0.77857 (14)	0.02920 (8)	0.0145 (3)
07	0.1851 (2)	0.91893 (15)	-0.06395 (9)	0.0186 (3)
08	0.23816 (19)	1.36547 (14)	0.03077 (8)	0.0144 (3)
09	0.5309 (2)	1.06860 (15)	0.25055 (9)	0.0221 (4)
O10	0.49467 (19)	0.86694 (14)	0.22539 (8)	0.0137 (3)
011	0.80104 (18)	0.69280 (15)	0.29264 (8)	0.0155 (3)
H11A	0.7985	0.7579	0.2560	0.019*
O13	0.6824 (3)	0.92019 (17)	0.36682 (10)	0.0296 (4)
H13B	0.6856	0.9689	0.4007	0.035*
H13A	0.6356	0.9734	0.3315	0.035*
O15	0.4245 (2)	0.51911 (15)	0.10194 (9)	0.0172 (3)
H15B	0.3615	0.4804	0.0792	0.021*
H15A	0.4127	0.4729	0.1465	0.021*
O16	0.21023 (18)	0.73191 (15)	0.18620 (8)	0.0146 (3)
H16A	0.2120	0.7088	0.2346	0.018*
N1	0.6307 (2)	0.48763 (17)	0.39380 (10)	0.0111 (3)
N2	0.3608 (2)	0.96575 (17)	0.09960 (9)	0.0109 (3)
N3	-0.1645 (2)	0.95121 (18)	-0.40617 (10)	0.0148 (4)
H3A	-0.2043	1.0024	-0.4440	0.018*
N4	0.1423 (2)	0.50965 (18)	-0.09767 (10)	0.0141 (3)
H4A	0.1802	0.4608	-0.0586	0.017*
C1	0.7559 (3)	0.5527 (2)	0.49466 (12)	0.0128 (4)
C2	0.7105 (3)	0.4426 (2)	0.45717 (11)	0.0111 (4)
C3	0.7429 (3)	0.3094 (2)	0.48443 (12)	0.0128 (4)
Н3	0.7997	0.2821	0.5279	0.015*
C4	0.6890 (3)	0.2126 (2)	0.44593 (11)	0.0131 (4)
C5	0.6039 (3)	0.2645 (2)	0.37913 (12)	0.0132 (4)
Н5	0.5654	0.2068	0.3516	0.016*
C6	0.5793 (3)	0.3989 (2)	0.35577 (11)	0.0113 (4)
C7	0.4945 (3)	0.4624 (2)	0.28500 (11)	0.0117 (4)
C8	0.2517 (3)	0.8969 (2)	-0.00416 (12)	0.0128 (4)
C9	0.2806 (3)	1.0087 (2)	0.03616 (11)	0.0116 (4)
C10	0.2339 (3)	1.1418 (2)	0.01168 (11)	0.0117 (4)
H10	0.1768	1.1676	-0.0319	0.014*
C11	0.2727 (3)	1.2403 (2)	0.05286 (11)	0.0114 (4)
C12	0.3553 (3)	1.1902 (2)	0.12072 (12)	0.0129 (4)
H12	0.3818	1.2491	0.1508	0.016*
C13	0.3953 (3)	1.0562 (2)	0.14123 (11)	0.0117 (4)
C14	0.4814 (3)	0.9955 (2)	0.21167 (12)	0.0133 (4)
C15	0.1954 (3)	0.6317 (2)	-0.11368 (12)	0.0146 (4)
H15	0.2685	0.6569	-0.0829	0.017*
C16	0.1420 (3)	0.7203 (2)	-0.17571 (12)	0.0142 (4)
H16	0.1806	0.8044	-0.1873	0.017*
C17	0.0292 (3)	0.6824 (2)	-0.22106 (11)	0.0118 (4)
C18	-0.0372 (3)	0.7772 (2)	-0.28624 (11)	0.0118 (4)
C19	-0.0412 (3)	0.9149 (2)	-0.28961 (12)	0.0155 (4)
H19	-0.0004	0.9490	-0.2510	0.019*

C20	-0.1056 (3)	1.0000 (2)	-0.35033 (12)	0.0170 (4)
H20	-0.1082	1.0916	-0.3526	0.020*
C21	-0.1612 (3)	0.8204 (2)	-0.40566 (12)	0.0153 (4)
H21	-0.2014	0.7896	-0.4455	0.018*
C22	-0.0982 (3)	0.7308 (2)	-0.34594 (12)	0.0139 (4)
H22	-0.0964	0.6397	-0.3455	0.017*
C23	-0.0233 (3)	0.5547 (2)	-0.20217 (12)	0.0148 (4)
H23	-0.0977	0.5270	-0.2314	0.018*
C24	0.0355 (3)	0.4695 (2)	-0.14003 (12)	0.0154 (4)
H24	0.0010	0.3841	-0.1275	0.019*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
Sb1	0.01408 (7)	0.00955 (7)	0.00914 (7)	-0.00086 (5)	-0.00371 (5)	-0.00003 (5)
Sb2	0.01203 (7)	0.00898 (7)	0.00915 (7)	-0.00093 (5)	-0.00270 (5)	0.00010 (5)
O1W	0.0153 (7)	0.0179 (8)	0.0148 (7)	-0.0018 (6)	-0.0057 (6)	0.0032 (6)
01	0.0225 (8)	0.0107 (7)	0.0125 (7)	-0.0030 (6)	-0.0072 (6)	0.0011 (6)
O2W	0.0242 (9)	0.0498 (13)	0.0392 (12)	0.0090 (9)	0.0027 (8)	0.0303 (10)
O2	0.0273 (8)	0.0135 (7)	0.0117 (7)	-0.0020 (6)	-0.0095 (6)	-0.0005 (6)
O3	0.0331 (9)	0.0092 (7)	0.0156 (7)	-0.0017 (6)	-0.0117 (6)	0.0016 (6)
O4	0.0273 (8)	0.0122 (7)	0.0145 (7)	-0.0043 (6)	-0.0110 (6)	0.0000 (6)
O5	0.0191 (7)	0.0102 (7)	0.0139 (7)	-0.0020 (6)	-0.0069 (6)	0.0003 (6)
O6	0.0214 (7)	0.0097 (7)	0.0134 (7)	-0.0017 (6)	-0.0070 (6)	-0.0001 (6)
07	0.0302 (8)	0.0138 (7)	0.0139 (7)	-0.0005 (6)	-0.0122 (6)	-0.0013 (6)
08	0.0220 (7)	0.0084 (7)	0.0128 (7)	-0.0002 (6)	-0.0066 (6)	0.0011 (5)
09	0.0396 (10)	0.0115 (7)	0.0190 (8)	-0.0024 (7)	-0.0175 (7)	-0.0012 (6)
O10	0.0197 (7)	0.0086 (7)	0.0135 (7)	-0.0017 (6)	-0.0063 (6)	0.0001 (6)
011	0.0145 (7)	0.0172 (8)	0.0131 (7)	-0.0020 (6)	-0.0030 (6)	0.0035 (6)
013	0.0574 (12)	0.0132 (8)	0.0231 (9)	-0.0055 (8)	-0.0228 (8)	-0.0006 (7)
O15	0.0258 (8)	0.0110 (7)	0.0162 (7)	-0.0043 (6)	-0.0087 (6)	0.0006 (6)
O16	0.0139 (7)	0.0180 (8)	0.0112 (7)	-0.0031 (6)	-0.0021 (5)	0.0012 (6)
N1	0.0140 (8)	0.0104 (8)	0.0089 (8)	-0.0012 (6)	-0.0033 (6)	0.0001 (6)
N2	0.0131 (8)	0.0098 (8)	0.0096 (8)	-0.0008 (6)	-0.0028 (6)	0.0000 (6)
N3	0.0184 (8)	0.0148 (9)	0.0105 (8)	-0.0016 (7)	-0.0050 (7)	0.0030 (7)
N4	0.0177 (8)	0.0129 (8)	0.0106 (8)	0.0020 (7)	-0.0042 (7)	0.0003 (7)
C1	0.0151 (9)	0.0120 (9)	0.0110 (9)	-0.0006 (7)	-0.0016 (7)	-0.0018 (8)
C2	0.0124 (9)	0.0135 (10)	0.0079 (9)	-0.0028 (7)	-0.0020 (7)	-0.0012 (7)
C3	0.0160 (9)	0.0126 (10)	0.0094 (9)	-0.0013 (7)	-0.0041 (7)	0.0015 (7)
C4	0.0170 (9)	0.0115 (9)	0.0103 (9)	-0.0012 (8)	-0.0024 (7)	0.0000 (7)
C5	0.0161 (9)	0.0129 (10)	0.0113 (9)	-0.0022 (7)	-0.0034 (7)	-0.0014 (8)
C6	0.0122 (9)	0.0127 (9)	0.0090 (9)	-0.0013 (7)	-0.0025 (7)	-0.0011 (7)
C7	0.0129 (9)	0.0110 (9)	0.0100 (9)	0.0005 (7)	-0.0022 (7)	0.0010 (7)
C8	0.0155 (9)	0.0111 (9)	0.0114 (9)	-0.0024 (7)	-0.0016 (7)	-0.0003 (8)
C9	0.0127 (9)	0.0123 (10)	0.0097 (9)	-0.0014 (7)	-0.0012 (7)	-0.0012 (7)
C10	0.0130 (9)	0.0130 (10)	0.0090 (9)	-0.0018 (7)	-0.0038 (7)	0.0005 (7)
C11	0.0132 (9)	0.0104 (9)	0.0095 (9)	-0.0004 (7)	-0.0002 (7)	0.0002 (7)
C12	0.0161 (9)	0.0112 (10)	0.0113 (9)	-0.0014 (7)	-0.0032 (7)	-0.0003 (8)

C13	0.0137 (9)	0.0114 (9)	0.0099 (9)	-0.0011 (7)	-0.0023 (7)	-0.0010 (7)
C14	0.0167 (9)	0.0117 (10)	0.0111 (9)	-0.0010(7)	-0.0041 (7)	0.0005 (8)
C15	0.0153 (9)	0.0144 (10)	0.0157 (10)	-0.0015 (8)	-0.0054 (8)	-0.0045 (8)
C16	0.0166 (9)	0.0115 (10)	0.0153 (10)	-0.0033 (8)	-0.0035 (8)	-0.0012 (8)
C17	0.0121 (9)	0.0118 (9)	0.0105 (9)	0.0002 (7)	0.0001 (7)	-0.0016 (8)
C18	0.0121 (9)	0.0115 (9)	0.0112 (9)	-0.0021 (7)	-0.0017 (7)	0.0007 (8)
C19	0.0215 (10)	0.0133 (10)	0.0129 (10)	-0.0029 (8)	-0.0054 (8)	-0.0019 (8)
C20	0.0224 (10)	0.0133 (10)	0.0158 (10)	-0.0026 (8)	-0.0053 (8)	-0.0007 (8)
C21	0.0179 (10)	0.0169 (10)	0.0120 (10)	-0.0035 (8)	-0.0051 (8)	-0.0010 (8)
C22	0.0177 (10)	0.0118 (10)	0.0128 (10)	-0.0031 (8)	-0.0040 (8)	-0.0011 (8)
C23	0.0171 (10)	0.0147 (10)	0.0140 (10)	-0.0035 (8)	-0.0061 (8)	-0.0012 (8)
C24	0.0195 (10)	0.0120 (10)	0.0152 (10)	-0.0032 (8)	-0.0048 (8)	0.0004 (8)

Geometric parameters (Å, °)

Sb1—O11	1.9300 (15)	N3—H3A	0.8500
Sb1—O1	2.1816 (14)	N4—C15	1.340 (3)
Sb1—N1	2.1972 (17)	N4—C24	1.341 (3)
Sb1—O5	2.3381 (15)	N4—H4A	0.8500
Sb1—O13	2.4861 (17)	C1—C2	1.505 (3)
Sb1—O10	2.7617 (14)	C2—C3	1.372 (3)
Sb2—O16	1.9304 (14)	C3—C4	1.431 (3)
Sb2—O6	2.1559 (14)	С3—Н3	0.9300
Sb2—N2	2.1908 (17)	C4—C5	1.432 (3)
Sb2—O10	2.3468 (15)	C5—C6	1.366 (3)
Sb2—O15	2.5350 (15)	С5—Н5	0.9300
Sb2—O5	2.7959 (14)	C6—C7	1.513 (3)
O1W—H1A	0.8500	C8—C9	1.506 (3)
O1W—H1B	0.8500	C9—C10	1.378 (3)
01—C1	1.293 (2)	C10—C11	1.428 (3)
O2W—H2A	0.8589	C10—H10	0.9300
O2W—H2B	0.8529	C11—C12	1.435 (3)
O2—C1	1.230 (2)	C12—C13	1.366 (3)
O3—C4	1.284 (3)	C12—H12	0.9300
O4—C7	1.235 (3)	C13—C14	1.507 (3)
O5—C7	1.285 (3)	C15—C16	1.380 (3)
O6—C8	1.297 (2)	C15—H15	0.9300
O7—C8	1.223 (2)	C16—C17	1.402 (3)
O8—C11	1.281 (2)	С16—Н16	0.9300
O9—C14	1.230 (3)	C17—C23	1.393 (3)
O10-C14	1.291 (3)	C17—C18	1.487 (3)
O11—H11A	0.8500	C18—C22	1.397 (3)
O13—H13B	0.8499	C18—C19	1.399 (3)
O13—H13A	0.8500	C19—C20	1.378 (3)
O15—H15B	0.8500	С19—Н19	0.9300
O15—H15A	0.8501	C20—H20	0.9300
O16—H16A	0.8549	C21—C22	1.383 (3)
N1—C2	1.348 (2)	C21—H21	0.9300
N1—C6	1.350 (3)	С22—Н22	0.9300

N2—C9	1.347 (3)	C23—C24	1.381 (3)
N2—C13	1.353 (3)	С23—Н23	0.9300
N3—C21	1.336 (3)	C24—H24	0.9300
N3—C20	1.342 (3)		
O11—Sb1—O1	88.73 (6)	C2—C3—C4	120.02 (18)
O11—Sb1—N1	87.40 (6)	С2—С3—Н3	120.0
O1—Sb1—N1	72.28 (6)	С4—С3—Н3	120.0
O11—Sb1—O5	82.88 (6)	O3—C4—C3	122.05 (18)
O1—Sb1—O5	141.44 (5)	O3—C4—C5	122.18 (19)
N1—Sb1—O5	69.80 (6)	C3—C4—C5	115.77 (18)
O11—Sb1—O13	79.47 (7)	C6—C5—C4	120.04 (19)
O1—Sb1—O13	72.89 (5)	С6—С5—Н5	120.0
N1—Sb1—O13	142.91 (6)	С4—С5—Н5	120.0
O5—Sb1—O13	140.84 (5)	N1—C6—C5	122.63 (18)
O11—Sb1—O10	78.80 (5)	N1—C6—C7	113.70 (17)
O1—Sb1—O10	148.04 (5)	C5—C6—C7	123.67 (18)
N1—Sb1—O10	135.33 (5)	O4—C7—O5	125.85 (18)
O5—Sb1—O10	66.46 (5)	O4—C7—C6	119.32 (18)
O13—Sb1—O10	75.93 (5)	O5—C7—C6	114.82 (17)
O16—Sb2—O6	84.67 (6)	07—C8—O6	123.94 (19)
O16—Sb2—N2	89.44 (6)	O7—C8—C9	121.27 (18)
O6—Sb2—N2	72.66 (6)	O6—C8—C9	114.78 (17)
O16—Sb2—O10	87.61 (6)	N2—C9—C10	122.26 (19)
O6—Sb2—O10	141.57 (5)	N2—C9—C8	112.91 (17)
N2—Sb2—O10	69.67 (6)	C10-C9-C8	124.82 (18)
016 - 8b2 - 015	84 54 (6)	C9—C10—C11	120.29(18)
06—Sb2—015	74.52 (5)	C9—C10—H10	119.9
N2 - Sb2 - O15	147.04(6)	C11—C10—H10	119.9
$010 - 8b^2 - 015$	142.00(5)	08-C11-C10	122.67 (18)
016 - 8b2 - 05	73 88 (5)	08-011-012	121 74 (18)
$06 - 8b^2 - 05$	145 16 (5)	C10-C11-C12	115 58 (18)
N2— $Sb2$ — $O5$	132.68 (5)	C13 - C12 - C11	120 15 (19)
$010 - 8b^2 - 05$	65 76 (5)	C13 - C12 - H12	119.9
$015 - 8b^2 - 05$	76 35 (5)	C11 - C12 - H12	119.9
H1A = 01W = H1B	108.1	N_{2} C_{13} C_{12}	122 65 (18)
C1 - O1 - Sb1	120 34 (13)	N_{2} C_{13} C_{14}	113 87 (17)
$H^2A = O^2W = H^2B$	107.6	C12-C13-C14	123 48 (18)
C7-O5-Sb1	118 75 (12)	09-C14-010	125.98 (19)
$C7 - 05 - Sb^2$	127 75 (12)	09-C14-C13	119 46 (18)
Sh1	113 14 (6)	010-014-013	114 56 (17)
C8 = 06 = Sb2	120.80(13)	N4-C15-C16	120.29(19)
C14 - O10 - Sb2	118 36 (12)	N4-C15-H15	119.9
C14 - O10 - Sb1	127 57 (12)	C16-C15-H15	119.9
Sb2	114.08(5)	C_{15} $-C_{16}$ $-C_{17}$	119.5
Sb1011H114	108 5	$C_{15} - C_{16} - H_{16}$	120.2
Sb1	138.7	C17—C16—H16	120.2
Sb1	103.0	C^{23} $-C^{17}$ $-C^{16}$	118 27 (18)
H13B_013_H13A	103.5	C_{23} C_{17} C_{18}	120 70 (19)
Sb2	137.7	C_{16} C_{17} C_{18}	120.70 (17)
	101.1		121.00 (17)

Sb2—O15—H15A	103.5	C22—C18—C19	118.02 (18)
H15B—O15—H15A	99.8	C22—C18—C17	120.69 (19)
Sb2—O16—H16A	113.5	C19—C18—C17	121.29 (19)
C2—N1—C6	119.08 (17)	C20-C19-C18	119.8 (2)
C2—N1—Sb1	118.77 (13)	С20—С19—Н19	120.1
C6—N1—Sb1	122.11 (13)	С18—С19—Н19	120.1
C9—N2—C13	119.02 (17)	N3—C20—C19	120.3 (2)
C9—N2—Sb2	118.66 (13)	N3—C20—H20	119.9
C13—N2—Sb2	122.29 (13)	С19—С20—Н20	119.9
C21—N3—C20	121.90 (18)	N3—C21—C22	120.11 (19)
C21—N3—H3A	116.7	N3—C21—H21	119.9
C20—N3—H3A	121.4	C22—C21—H21	119.9
C15—N4—C24	121.93 (18)	C21—C22—C18	119.90 (19)
C15—N4—H4A	115.0	C21—C22—H22	120.0
C24—N4—H4A	123.1	C18—C22—H22	120.0
O2—C1—O1	123.94 (19)	C24—C23—C17	119.90 (19)
O2—C1—C2	121.16 (19)	С24—С23—Н23	120.0
O1—C1—C2	114.88 (17)	С17—С23—Н23	120.0
N1—C2—C3	122.44 (19)	N4—C24—C23	120.1 (2)
N1—C2—C1	113.16 (17)	N4—C24—H24	120.0
C3—C2—C1	124.39 (18)	C23—C24—H24	120.0
O11—Sb1—O1—C1	-94.49 (15)	Sb1—N1—C2—C1	-0.4 (2)
N1—Sb1—O1—C1	-6.82 (14)	O2-C1-C2-N1	173.49 (19)
O5—Sb1—O1—C1	-17.6 (2)	O1—C1—C2—N1	-5.3 (3)
O13—Sb1—O1—C1	-173.86 (16)	O2—C1—C2—C3	-5.3 (3)
O10—Sb1—O1—C1	-160.75 (13)	O1—C1—C2—C3	175.91 (19)
O11—Sb1—O5—C7	98.21 (15)	N1—C2—C3—C4	-0.9 (3)
O1—Sb1—O5—C7	19.31 (19)	C1—C2—C3—C4	177.82 (19)
N1—Sb1—O5—C7	8.37 (14)	C2—C3—C4—O3	-179.9 (2)
O13—Sb1—O5—C7	161.79 (14)	C2—C3—C4—C5	0.5 (3)
O10—Sb1—O5—C7	179.06 (16)	O3—C4—C5—C6	-179.3 (2)
O11—Sb1—O5—Sb2	-75.41 (7)	C3—C4—C5—C6	0.2 (3)
O1—Sb1—O5—Sb2	-154.31 (7)	C2—N1—C6—C5	0.4 (3)
N1—Sb1—O5—Sb2	-165.25 (8)	Sb1—N1—C6—C5	-177.52 (15)
O13—Sb1—O5—Sb2	-11.83 (12)	C2—N1—C6—C7	-178.94 (17)
O10—Sb1—O5—Sb2	5.44 (4)	Sb1—N1—C6—C7	3.1 (2)
O16—Sb2—O5—C7	85.91 (16)	C4—C5—C6—N1	-0.7 (3)
O6—Sb2—O5—C7	31.7 (2)	C4—C5—C6—C7	178.54 (18)
N2—Sb2—O5—C7	159.63 (15)	Sb1—O5—C7—O4	171.21 (16)
O10—Sb2—O5—C7	-179.36 (17)	Sb2—O5—C7—O4	-16.2 (3)
O15—Sb2—O5—C7	-2.28 (15)	Sb1—O5—C7—C6	-9.6 (2)
O16—Sb2—O5—Sb1	-101.17 (7)	Sb2—O5—C7—C6	163.02 (12)
O6—Sb2—O5—Sb1	-155.40 (7)	N1—C6—C7—O4	-176.23 (18)
N2—Sb2—O5—Sb1	-27.44 (10)	C5—C6—C7—O4	4.4 (3)
O10—Sb2—O5—Sb1	-6.43 (5)	N1—C6—C7—O5	4.5 (3)
O15—Sb2—O5—Sb1	170.65 (7)	C5—C6—C7—O5	-174.85 (19)
O16—Sb2—O6—C8	95.22 (15)	Sb2—O6—C8—O7	174.97 (16)
N2—Sb2—O6—C8	4.14 (15)	Sb2—O6—C8—C9	-4.5 (2)
O10—Sb2—O6—C8	15.9 (2)	C13—N2—C9—C10	0.6 (3)

O15—Sb2—O6—C8	-178.98 (16)	Sb2—N2—C9—C10	-177.32 (15)
O5—Sb2—O6—C8	146.75 (13)	C13—N2—C9—C8	179.79 (17)
O16—Sb2—O10—C14	-100.59 (15)	Sb2—N2—C9—C8	1.8 (2)
O6—Sb2—O10—C14	-22.27 (19)	O7—C8—C9—N2	-177.86 (19)
N2—Sb2—O10—C14	-10.30 (14)	O6—C8—C9—N2	1.6 (3)
O15—Sb2—O10—C14	-178.59 (13)	O7—C8—C9—C10	1.3 (3)
O5—Sb2—O10—C14	-173.98 (16)	O6—C8—C9—C10	-179.23 (19)
O16—Sb2—O10—Sb1	78.87 (7)	N2-C9-C10-C11	1.2 (3)
O6—Sb2—O10—Sb1	157.19 (7)	C8—C9—C10—C11	-177.87 (18)
N2—Sb2—O10—Sb1	169.16 (8)	C9—C10—C11—O8	177.21 (19)
O15—Sb2—O10—Sb1	0.88 (11)	C9-C10-C11-C12	-2.1 (3)
O5—Sb2—O10—Sb1	5.48 (5)	O8—C11—C12—C13	-177.93 (19)
O11-Sb1-O10-C14	-100.08 (17)	C10-C11-C12-C13	1.4 (3)
O1-Sb1-O10-C14	-31.2 (2)	C9—N2—C13—C12	-1.4 (3)
N1-Sb1-O10-C14	-174.64 (15)	Sb2—N2—C13—C12	176.48 (15)
O5-Sb1-O10-C14	172.88 (17)	C9—N2—C13—C14	178.68 (17)
O13—Sb1—O10—C14	-18.26 (16)	Sb2—N2—C13—C14	-3.4 (2)
O11—Sb1—O10—Sb2	80.52 (7)	C11—C12—C13—N2	0.3 (3)
O1—Sb1—O10—Sb2	149.42 (8)	C11—C12—C13—C14	-179.77 (18)
N1—Sb1—O10—Sb2	5.96 (11)	Sb2—O10—C14—O9	-168.47 (18)
O5—Sb1—O10—Sb2	-6.53 (5)	Sb1	12.2 (3)
O13—Sb1—O10—Sb2	162.33 (8)	Sb2	12.0 (2)
O11—Sb1—N1—C2	92.96 (15)	Sb1-010-C14-C13	-167.43 (12)
O1—Sb1—N1—C2	3.46 (14)	N2-C13-C14-O9	174.43 (19)
O5—Sb1—N1—C2	176.33 (16)	C12—C13—C14—O9	-5.5 (3)
O13—Sb1—N1—C2	24.3 (2)	N2-C13-C14-O10	-6.0 (3)
O10—Sb1—N1—C2	164.14 (12)	C12-C13-C14-O10	174.13 (19)
O11—Sb1—N1—C6	-89.12 (16)	C24—N4—C15—C16	-0.7 (3)
O1—Sb1—N1—C6	-178.62 (17)	N4—C15—C16—C17	1.2 (3)
O5—Sb1—N1—C6	-5.75 (14)	C15—C16—C17—C23	-0.9 (3)
O13—Sb1—N1—C6	-157.80 (14)	C15—C16—C17—C18	177.29 (19)
O10—Sb1—N1—C6	-17.93 (19)	C23—C17—C18—C22	-23.5 (3)
O16—Sb2—N2—C9	-87.61 (15)	C16-C17-C18-C22	158.33 (19)
O6—Sb2—N2—C9	-3.03 (14)	C23—C17—C18—C19	156.3 (2)
O10—Sb2—N2—C9	-175.27 (16)	C16—C17—C18—C19	-21.9 (3)
O15—Sb2—N2—C9	-8.6 (2)	C22-C18-C19-C20	0.6 (3)
O5—Sb2—N2—C9	-154.87 (13)	C17—C18—C19—C20	-179.2 (2)
O16—Sb2—N2—C13	94.50 (16)	C21—N3—C20—C19	-0.8 (3)
O6—Sb2—N2—C13	179.08 (17)	C18—C19—C20—N3	0.0 (3)
O10-Sb2-N2-C13	6.84 (14)	C20—N3—C21—C22	0.9 (3)
O15—Sb2—N2—C13	173.56 (13)	N3—C21—C22—C18	-0.2 (3)
O5—Sb2—N2—C13	27.24 (18)	C19-C18-C22-C21	-0.5 (3)
Sb1—O1—C1—O2	-169.95 (16)	C17—C18—C22—C21	179.29 (19)
Sb1—O1—C1—C2	8.8 (2)	C16—C17—C23—C24	0.2 (3)
C6—N1—C2—C3	0.4 (3)	C18—C17—C23—C24	-178.03 (19)
Sb1—N1—C2—C3	178.41 (15)	C15—N4—C24—C23	-0.1 (3)
C6—N1—C2—C1	-178.42 (17)	C17—C23—C24—N4	0.3 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O1W—H1A···O2 ⁱ	0.85	1.88	2.725 (2)	177
O1W—H1B…O11 ⁱⁱ	0.85	1.87	2.704 (2)	167
O2W—H2A…O7 ⁱⁱⁱ	0.86	1.85	2.703 (2)	171
O2W—H2B···O16 ^{iv}	0.85	1.86	2.669 (2)	157
O11—H11A…O2W	0.85	1.90	2.688 (2)	154
O16—H16A…O1W	0.85	1.88	2.684 (2)	155
O13—H13A…O9	0.85	1.83	2.672 (2)	173
O13—H13B···O3 ^v	0.85	1.92	2.764 (2)	173
O15—H15A…O4	0.85	1.88	2.709 (2)	166
O15—H15B…O8 ^{vi}	0.85	1.98	2.823 (2)	171
N3—H3A····O3 ^{vii}	0.85	1.78	2.624 (2)	171
N4—H4A····O8 ^{vi}	0.85	1.80	2.648 (2)	173
C3—H3···O1W ⁱ	0.93	2.60	3.460 (3)	154
C5—H5…O9 ^{vi}	0.93	2.53	3.434 (3)	164
C12—H12····O4 ^v	0.93	2.55	3.470 (3)	172
С15—Н15…Об	0.93	2.59	3.415 (3)	149
C19—H19····O2W ⁱⁱⁱ	0.93	2.60	3.484 (3)	160
C20—H20····O1W ^{viii}	0.93	2.25	3.172 (3)	172
C21—H21····O1 ^{ix}	0.93	2.44	3.358 (3)	170
C22—H22····O2 ^{ix}	0.93	2.45	3.107 (3)	128
C24—H24···O16 ^x	0.93	2.57	3.261 (3)	131

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) *x*-1, *y*, *z*; (iii) -*x*+1, -*y*+2, -*z*; (iv) *x*+1, *y*, *z*; (v) *x*, *y*+1, *z*; (vi) *x*, *y*-1, *z*; (vii) *x*-1, *y*+1, *z*-1; (viii) -*x*, -*y*+2, -*z*; (ix) *x*-1, *y*, *z*-1; (x) -*x*, -*y*+1, -*z*.

Fig. 2

Fig. 3

Fig. 4

